Package: iotarelr 0.1.5

iotarelr: Iota Inter Coder Reliability for Content Analysis

Routines and tools for assessing the quality of content analysis on the basis of the Iota Reliability Concept. The concept is inspired by item response theory and can be applied to any kind of content analysis which uses a standardized coding scheme and discrete categories. It is also applicable for content analysis conducted by artificial intelligence. The package provides reliability measures for a complete scale as well as for every single category. Analysis of subgroup-invariance and error corrections are implemented. This information can support the development process of a coding scheme and allows a detailed inspection of the quality of the generated data. Equations and formulas working in this package are part of Berding et al. (2022)<doi:10.3389/feduc.2022.818365> and Berding and Pargmann (2022) <doi:10.30819/5581>.

Authors:Berding Florian [aut, cre], Pargmann Julia [ctb]

iotarelr_0.1.5.tar.gz
iotarelr_0.1.5.zip(r-4.5)iotarelr_0.1.5.zip(r-4.4)iotarelr_0.1.5.zip(r-4.3)
iotarelr_0.1.5.tgz(r-4.4-x86_64)iotarelr_0.1.5.tgz(r-4.4-arm64)iotarelr_0.1.5.tgz(r-4.3-x86_64)iotarelr_0.1.5.tgz(r-4.3-arm64)
iotarelr_0.1.5.tar.gz(r-4.5-noble)iotarelr_0.1.5.tar.gz(r-4.4-noble)
iotarelr_0.1.5.tgz(r-4.4-emscripten)iotarelr_0.1.5.tgz(r-4.3-emscripten)
iotarelr.pdf |iotarelr.html
iotarelr/json (API)
NEWS

# Install 'iotarelr' in R:
install.packages('iotarelr', repos = c('https://fberding.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/fberding/iotarelr/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

5.53 score 2 stars 1 packages 19 scripts 215 downloads 14 exports 40 dependencies

Last updated 10 months agofrom:66bfbeee97. Checks:OK: 6 NOTE: 2 ERROR: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 21 2024
R-4.5-win-x86_64NOTEOct 21 2024
R-4.5-linux-x86_64NOTEOct 21 2024
R-4.4-win-x86_64ERROROct 21 2024
R-4.4-mac-x86_64OKOct 21 2024
R-4.4-mac-aarch64OKOct 21 2024
R-4.3-win-x86_64OKOct 21 2024
R-4.3-mac-x86_64OKOct 21 2024
R-4.3-mac-aarch64OKOct 21 2024

Exports:check_conformity_ccheck_dgfcheck_new_ratercompute_iota1compute_iota2EM_algo_cest_con_multinominal_cest_expected_categoriesget_consequencesget_iota2_measuresget_patternsget_summaryplot_iotaplot_iota2_alluvial

Dependencies:clicolorspacecpp11dplyrfansifarvergenericsggalluvialggplot2gluegridExtragtableisobandlabelinglatticelazyevallifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerRcpprlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr

Get started

Rendered fromiotarelr.Rmdusingknitr::rmarkdownon Oct 21 2024.

Last update: 2023-01-05
Started: 2022-08-02

Estimating Consequences for Subsequent Analyses

Rendered fromV_02_Estimating_Consequences_for_Subsequent_Analyses.Rmdusingknitr::rmarkdownon Oct 21 2024.

Last update: 2023-01-05
Started: 2023-01-05

Different Guidance Functioning

Rendered fromV_03_Different_Guidance_Functioning.Rmdusingknitr::rmarkdownon Oct 21 2024.

Last update: 2023-01-05
Started: 2023-01-05

Error Correction

Rendered fromV_04_Error_Correction.Rmdusingknitr::rmarkdownon Oct 21 2024.

Last update: 2023-01-05
Started: 2023-01-05

Test New Raters

Rendered fromV_05_Test_New_Raters.Rmdusingknitr::rmarkdownon Oct 21 2024.

Last update: 2023-01-05
Started: 2023-01-05

Old 1) How to use Iota1

Rendered fromOld_01_How_to_use_Iota1.Rmdusingknitr::rmarkdownon Oct 21 2024.

Last update: 2023-01-05
Started: 2023-01-05