Package: iotarelr (via r-universe)

October 21, 2024

Type Package

Title Iota Inter Coder Reliability for Content Analysis

Version 0.1.5

Description Routines and tools for assessing the quality of content analysis on the basis of the Iota Reliability Concept. The concept is inspired by item response theory and can be applied to any kind of content analysis which uses a standardized coding scheme and discrete categories. It is also applicable for content analysis conducted by artificial intelligence. The package provides reliability measures for a complete scale as well as for every single category. Analysis of subgroup-invariance and error corrections are implemented. This information can support the development process of a coding scheme and allows a detailed inspection of the quality of the generated data. Equations and formulas working in this package are part of Berding et al.

(2022)<doi:10.3389/feduc.2022.818365> and Berding and Pargmann (2022) <doi:10.30819/5581>.

License GPL-3

URL https://fberding.github.io/iotarelr/

BugReports https://github.com/FBerding/iotarelr/issues

Depends R (>= 3.5.0)

Imports ggplot2, ggalluvial, gridExtra, methods, Rcpp, rlang, stats

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

LinkingTo Rcpp

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

2 check_conformity_c

Repository https://fberding.r-universe.dev

RemoteUrl https://github.com/fberding/iotarelr

RemoteRef HEAD

RemoteSha 66bfbeee97fd85853fcf58da2168c26b0b1bac73

Contents

	check_conformity_c	2
	check_dgf	3
	check_new_rater	
	compute_iota1	7
	compute_iota2	
	EM_algo_c	
	est_con_multinominal_c	
	est_expected_categories	
	fct_log_likelihood_c	
	get_consequences	
	get_iota2_measures	
	get_patterns	
	get_random_start_values_class_sizes	
	get_random_start_values_p	
	get_summary	
	grad_ll	
	iotarelr_new_rater	
	iotarelr_written_exams	
	log_likelihood_multi_c	
	plot_iota	
	plot_iota2_alluvial	23
Index		25
inuca		

check_conformity_c

Check assumptions of weak superiority

Description

This function tests if the probabilities within the Assignment Error Matrix are in line with the assumption of weak superiority.

Usage

check_conformity_c(aem)

Arguments

aem

matrix of probabilities

check_dgf 3

Value

Returns the number of violations of the assumption of weak superiority. 0 if the assumptions are fulfilled.

References

Berding, Florian, and Pargmann, Julia (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin: Logos. https://doi.org/10.30819/5581

check_dgf

Check for Different Guidance Functioning (DGF)

Description

Function for checking if the coding scheme is the same for different sub-groups.

Usage

```
check_dgf(
  data,
  splitcr,
  random_starts = 300,
  max_iterations = 5000,
  cr_rel_change = 1e-12,
  con_step_size = 1e-04,
  con_random_starts = 10,
  con_max_iterations = 5000,
  con_rel_convergence = 1e-12,
  b_min = 0.01,
  trace = FALSE,
  con_trace = FALSE,
  fast = TRUE
)
```

Arguments

data	Data for which the elements should be estimated. Data must be an object of type data.frame or matrix with cases in the rows and raters in the columns. Please note that no additional variables are allowed in this object.
splitcr	Vector containing the assignments of coding units to groups. The vector must have the same length as the number of rows of object data.
random_starts	An integer for the number of random starts for the EM algorithm.
max_iterations	An integer for the maximum number of iterations within the EM algorithm.
cr_rel_change	Positive numeric value for defining the convergence of the EM algorithm.
con_step_size	Double for specifying the size for increasing or decreasing the probabilities during the conditioning stage of estimation. This value should not be less than 1e-3.

4 check_new_rater

con_random_starts

Integer for the number of random starts within the condition stage.

con_max_iterations

Integer for the maximum number of iterations during the condition stage.

con_rel_convergence

Double for determining the convergence criterion during condition stage. The

algorithm stops if the relative change is smaller than this criterion.

b_min Value ranging between 0 and 1 determining the minimal size of the categories

for checking if boundary values occurred. The algorithm tries to select solutions

that are not considered to be boundary values.

trace TRUE for printing progress information on the console. FALSE if this information

is not to be printed.

con_trace TRUE for printing progress information on the console during estimations in the

condition stage. FALSE if this information is not to be printed.

fast Bool If TRUE a fast estimation is applied during the condition stage. This option

ignores all parameters beginning with "con". If FALSE the estimation described

in Berding and Pargmann (2022) is used. Default is TRUE.

Value

Returns an object of class iotarelr_iota2_dif. For each group, the results of the estimation are saved separately. The structure within each group is similar to the results from compute_iota2(). Please check that documentation.

References

Florian Berding and Julia Pargmann (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin:Logos. https://doi.org/10.30819/5581

check_new_rater Chec

Check new rater

Description

Function for estimating the reliability of codings for a new rater based on Iota 2

Usage

```
check_new_rater(
   true_values,
   assigned_values,
   con_step_size = 1e-04,
   con_random_starts = 5,
   con_max_iterations = 5000,
   con_rel_convergence = 1e-12,
   con_trace = FALSE,
```

check_new_rater 5

```
fast = TRUE,
  free_aem = FALSE
)
```

Arguments

true_values

Vector containing the true categories of the coding units. Vector must have the same length as assigned_values.

assigned_values

Vector containing the assigned categories of the coding units. Missing values are currently not supported and have to be omitted from the vector. Vector must have the same length as true_values.

con_step_size

Double for specifying the size for increasing or decreasing the probabilities during the conditioning stage of estimation. This value should not be less than 1e-3.

con_random_starts

Integer for the number of random starts within the condition stage.

con_max_iterations

Integer for the maximum number of iterations during the conditioning stage.

con_rel_convergence

Double for determining the convergence criterion during the conditioning stage. The algorithm stops if the relative change is smaller than this criterion.

con_trace

TRUE for printing progress information on the console during estimations in the conditioning stage. FALSE if you do not want to have this information printed.

fast

Bool If TRUE a fast estimation is applied during the condition stage. This option ignores all parameters beginning with "con_". If FALSE the estimation described in Berding and Pargmann (2022) is used. Default is TRUE.

free_aem

Bool If TRUE the Assignment Error Matrix is estimated in a way ensuring conformity with the assumption of weak superiority. if FALSE the Assignment Error Matrix is freely estimated. TRUE is default.

Value

Returns a list with the following three components: The first component estimates_categorical_level comprises all elements that describe the ratings on a categorical level. The elements are sub-divided into raw estimates and chance-corrected estimates.

raw_estimates

alpha_reliability: A vector containing the Alpha Reliabilities for each category. These values represent probabilities.

beta_reliability: A vector containing the Beta Reliabilities for each category. These values represent probabilities.

assignment_error_matrix: An Assignment Error Matrix containing the conditional probabilities for assigning a unit of category i to categories 1 to n.

iota: A vector containing the Iota values for each category.

elements_chance_corrected

6 check_new_rater

alpha_reliability: A vector containing the chance-corrected Alpha Reliabilities for each category.

beta_reliability: A vector containing the chance-corrected Beta Reliabilities for each category.

The second component estimates_scale_level contains elements to describe the quality of the ratings on a scale level. It contains the following elements:

iota_index: The Iota Index representing the reliability on a scale level.

iota_index_d4: The Static Iota Index, which is a transformation of the original Iota Index, in order to consider the uncertainty of estimation.

iota_index_dyn2: The Dynamic Iota Index, which is a transformation of the original Iota Index, in order to consider the uncertainty of estimation.

The third component information contains important information regarding the parameter estimation. It comprises the following elements:

log_likelihood: Log-likelihood of the best solution.

convergence: If estimation converged 0, otherwise 1.

est_true_cat_sizes: Estimated categorical sizes. This is the estimated amount of the categories.

conformity: 0 if the solution is in line with assumptions of weak superiority. A number greater 0 indicates the number of violations of the assumption of weak superiority.

random_starts: Numer of random starts for the EM algorithm.

boundaries: False if the best solution does not contain boundary values. True if the best solution does contain boundary values

p_boundaries: Percentage of solutions with boundary values during estimation.

call: Name of the function that created the object.

n_rater: Number of raters.

n_cunits: Number of coding units.

Note

The returned object contains further slots since the returned object is of class iotarelr_iota2. These slots are empty because they are not part of the estimation within this function.

Please do not use the measures on the scale level if the Assignment Error Matrix was freely estimated since this kind of matrix is not conceptualized for comparing the coding process with random guessing.

References

Florian Berding and Julia Pargmann (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin:Logos. https://doi.org/10.30819/5581

compute_iota1 7

compute_iota1	Computes Iota and its elements in version 1

Description

Computes all elements of the Iota Reliability Concept

Usage

```
compute_iota1(data)
```

Arguments

data Data for which the elements should be estimated. Data must be an object of type

data. frame or matrix with cases in the rows and raters in the columns.

Value

A list with the following components

alpha A vector containing the chance-corrected Alpha Reliabilities for every category.

beta A vector containing the chance-corrected Beta Reliabilities for every category.

iota A vector containing the Iota values for every category.

assignment_error_matrix

A matrix with the conditional probabilities for every category. The rows refer to the true categories and the columns refer to the assigned categories. The elements on the diagonal represent the alpha errors of that category. The other elements in each row represent the conditioned probabilities that a coding unit

is wrongly assigned to another category.

average_iota A numeric value ranging between 0 and 1, representing the Average Iota values

on a categorical level. It describes the reliability of the whole scale.

References

- Berding, Florian, Elisabeth Riebenbauer, Simone Stuetz, Heike Jahncke, Andreas Slopinski, and Karin Rebmann. 2022. Performance and Configuration of Artificial Intelligence in Educational Settings.Introducing a New Reliability Concept Based on Content Analysis. Frontiers in Education. https://doi.org/10.3389/feduc.2022.818365

8 compute_iota2

compute_iota2

Computes Iota and its elements in version 2

Description

Fits a model of Iota2 to the data

Usage

```
compute_iota2(
  data,
  random_starts = 10,
  max_iterations = 5000,
  cr_rel_change = 1e-12,
  con_step_size = 1e-04,
  con_rel_convergence = 1e-12,
  con_max_iterations = 5000,
  con_random_starts = 5,
  b_min = 0.01,
  fast = TRUE,
  trace = TRUE,
  con_trace = FALSE
)
```

Arguments

data	Data for which the elemen	s should be estimated.	Data must be ar	object of type
------	---------------------------	------------------------	-----------------	----------------

data. frame or matrix with cases in the rows and raters in the columns.

random_starts An integer for the number of random starts for the EM algorithm.

max_iterations An integer for the maximum number of iterations within the EM algorithm.

cr_rel_change Positive numeric value for defining the convergence of the EM algorithm.

con_step_size Double for specifying the size for increasing or decreasing the probabilities dur-

ing the conditioning stage of estimation. This value should not be less than 1e-3.

con_rel_convergence

Double for determining the convergence criterion during the conditioning stage. The algorithm stops if the relative change is smaller than this criterion.

con_max_iterations

Integer for the maximum number of iterations during the conditioning stage.

 ${\tt con_random_starts}$

Integer for the number of random starts within the conditioning stage.

b_min Value ranging between 0 and 1, determining the minimal size of the categories

for checking if boundary values occurred. The algorithm tries to select solutions

that are not considered to be boundary values.

compute_iota2 9

Bool If TRUE a fast estimation is applied during the condition stage. This option ignores all parameters beginning with "con_". If FALSE the estimation described in Berding and Pargmann (2022) is used. Default is TRUE.

TRUE for printing progress information on the console. FALSE if this information is not to be printed.

TRUE for printing progress information on the console during estimations in the conditioning stage. FALSE if this information is not to be printed.

Value

con_trace

Returns a list with the following three components: The first component estimates_categorical_level comprises all elements that describe the ratings on a categorical level. The elements are sub-divided into raw estimates and chance-corrected estimates.

raw_estimates alpha_reliability: A vector containing the Alpha Reliabilities for each category. These values represent probabilities.

beta_reliability: A vector containing the Beta Reliabilities for each category. These values represent probabilities.

assignment_error_matrix: Assignment Error Matrix containing the conditional probabilities for assigning a unit of category i to categories 1 to n.

iota: A vector containing the Iota values for each category.

iota_error_1: A vector containing the Iota Error Type I values for each category.

iota_error_2: A vector containing the Iota Error Type II values for each category.

elements_chance_corrected alpha_reliability: A vector containing the chance-corrected Alpha Reliabilities for each category.

beta_reliability: A vector containing the chance-corrected Beta Reliabilities for each category.

The second component estimates_scale_level contains elements for describing the quality of the ratings on a scale level. It comprises the following elements:

iota_index: The Iota Index, representing the reliability on a scale level.

iota_index_d4: The Static Iota Index, which is a transformation of the original Iota Index, in order to consider the uncertainty of estimation.

iota_index_dyn2: The Dynamic Iota Index, which is a transformation of the original Iota Index, in order to consider the uncertainty of estimation.

The third component information contains important information regarding the parameter estimation. It comprises the following elements:

log_likelihood: Log-likelihood of the best solution.

convergence: If estimation converged 0, otherwise 1.

est_true_cat_sizes: Estimated categorical sizes. This is the estimated amount of the categories.

conformity: 0 if the solution is in line with assumptions of weak superiority. A number greater 0 indicates the number of violations of the assumption of weak superiority.

random_starts: Numer of random starts for the EM algorithm.

boundaries: False if the best solution does not contain boundary values. True if the best solution does contain boundary values

10 EM_algo_c

p_boundaries: Percentage of solutions with boundary values during the estimation.

call: Name of the function that created the object.

n_rater: Number of raters.

n_cunits: Number of coding units.

References

Florian Berding and Julia Pargmann (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin: Logos. https://doi.org/10.30819/5581

EM_algo_c

Parameter estimation via EM Algorithm with Condition Stage

Description

Function written in C++ for estimating the parameters of the model via Expectation Maximization (EM Algorithm).

Usage

```
EM_algo_c(
 obs_pattern_shape,
  obs_pattern_frq,
 obs_internal_count,
  categorical_levels,
  random_starts,
 max_iterations,
  rel_convergence,
  con_step_size,
  con_random_starts,
  con_max_iterations,
  con_rel_convergence,
  fast,
  trace,
  con_trace
)
```

Arguments

```
obs_pattern_shape
```

Matrix containing the unique patterns found in the data. Ideally this matrix is generated by the function get_patterns().

```
obs_pattern_frq
```

Vector containing the frequencies of the patterns. Ideally it is generated by the the function get_patterns().

 EM_algo_c

obs_internal_count

Matrix containing the relative frequencies of each category within each pattern. Ideally this matrix is generated by the function get_patterns().

categorical_levels

Vector containing all possible categories of the content analysis.

random_starts Integer for determining how often the algorithm should restart with randomly chosen values for the Assignment Error Matrix and the categorical sizes.

max_iterations Integer for determining the maximum number of iterations for each random

rel_convergence

Double for determining the convergence criterion. The algorithm stops if the relative change is smaller than this criterion.

con_step_size Double for specifying the size for increasing or decreasing the probabilities during the condition stage of estimation. This value should not be less than 1e-3.

con_random_starts

Integer for the number of random starts within the condition stage.

con_max_iterations

Integer for the maximum number of iterations during the condition stage.

con_rel_convergence

Double for determining the convergence criterion during condition stage. The algorithm stops if the relative change is smaller than this criterion.

fast Bool If TRUE a fast estimation is applied during the condition stage. This option ignores all parameters beginning with "con_". If FALSE the estimation described

in Berding and Pargmann (2022) is used. Default is TRUE.

trace TRUE for printing progress information on the console. FALSE if this information

should not be printed.

con_trace TRUE for printing progress information on the console during estimations in the

condition stage. FALSE if this information should not be printed.

Value

Function returns a list with the estimated parameter sets for every random start. Every parameter set contains the following components:

log_likelihood Log likelihood of the estimated solution.

aem Estimated Assignment Error Matrix (aem). The rows represent the true categories while the columns stand for the assigned categories. The cells describe

the probability that a coding unit of category i is assigned to category j.

categorial_sizes

Vector of estimated sizes for each category.

convergence If the algorithm converged within the iteration limit TRUE. FALSE in every other

case

iteration Number of iterations when the algorithm was terminated.

References

Berding, Florian, and Pargmann, Julia (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin: Logos. https://doi.org/10.30819/5581

```
est_con_multinominal_c
```

Estimating log likelihood in Condition Stage

Description

Function written in C++ estimating the log likelihood of a given parameter set during the condition stage.

Usage

```
est_con_multinominal_c(
  observations,
  anchor,
  max_iter = 500000L,
  step_size = 1e-04,
  cr_rel_change = 1e-12,
  n_random_starts = 10L,
  fast = TRUE,
  trace = FALSE
)
```

Arguments

observations	Numeric vector containing the frequency of the categories.
	T

anchor Integer ranging between 1 and the number of categories. Anchor defines the reference category. That is the category with the highest probability according

to the assumption of weak superiority.

max_iter Integer specifying the maximal number of iterations for each random start.

step_size Double for specifying the size for increasing or decreasing the probabilities dur-

ing the estimation. This value should not be less than 1e-3.

cr_rel_change Double for defining when the estimation should stop. That is, if the change in

log-likelihood is smaller as this value the estimation stops.

n_random_starts

Integer for the number of random start.

fast Bool If TRUE a fast estimation is applied. This option ignored all other parame-

ters. If FALSE the estimation described in Berding and Pargmann (2022) is used.

Default is TRUE.

trace Bool TRUE if information about the progress of estimation should be printed to

the console. FALSE if not desired.

Value

Returns the log likelihood as a single numeric value.

References

Berding, Florian, and Pargmann, Julia (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin: Logos. https://doi.org/10.30819/5581

est_expected_categories

Estimate Expected Categories

Description

Function for estimating the expected category of coding units.

Usage

est_expected_categories(data, aem)

Arguments

data Matrix which contains the codings for every coding unit. The coding units

must be in the rows and the raters must be in the columns. At least two raters

are necessary.

aem Assignment Error Matrix based on the second generation of the Iota Concept

(Iota2).

Value

Returns a matrix with the original data, the conditioned probability of each true category, and the expected category for every coding unit.

References

Florian Berding and Julia Pargmann (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin:Logos. https://doi.org/10.30819/5581

14 fct_log_likelihood_c

Description

Function written in C++ estimating the log likelihood of a given parameter set.

Usage

```
fct_log_likelihood_c(
  categorial_sizes,
  aem,
  obs_pattern_shape,
  obs_pattern_frq,
  categorical_levels
)
```

Arguments

categorial_sizes

Vector containing the sizes of the different categories. That is amount of a category on all cases.

aem

Matrix in aem form. This matrix reports the true category in the rows and the assigned categories in the columns. The cells represent the probabilities that a coding unit of category i is assigned to category j.

obs_pattern_shape

Matrix containing the unique patterns found in the data. Ideally this matrix is generated by the function get_patterns().

obs_pattern_frq

Vector containing the frequencies of the patterns. Ideally it is generated by the the function get_patterns().

categorical_levels

Vector containing all possible categories of the content analysis.

Value

Returns the log likelihood as a single numeric value.

References

Berding, Florian, and Pargmann, Julia (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin: Logos. https://doi.org/10.30819/5581

get_consequences 15

get_consequences

Get Consequences

Description

Function estimating the consequences of reliability for subsequent analysis.

Usage

```
get_consequences(
  measure_typ = "dynamic_iota_index",
  measure_1_val,
  measure_2_val = NULL,
  level = 0.95,
  strength = NULL,
  data_type,
  sample_size
)
```

Arguments

measure_typ Ty

Type of measure used for estimation. Set "iota_index" for the original Iota Index, "static_iota_index" for the static transformation of the Iota Index with d=4 or "dynamic_iota_index" for the dynamic transformation of the Iota Index with d=2.

u-

measure_1_val Reliability value for the independent variable.

measure_2_val Reliability value for the dependent variable. If not set, the function uses the

same value as for the independent variable.

level Level of certainty for calculating the prediction intervals.

strength True strength of the relationship between the independent and dependent vari-

able. Possible values are "no", "weak", "medium" and "strong". If no value is supplied, a strong relationship is assumed for deviation and a weak relationship for all others. They represent the most demanding situations for the reliability.

data_type Type of data. Possible values are "nominal" or "ordinal".

sample_size Size of the sample in the study.

Value

Returns a data.frame which contains the prediction intervals for the deviation between true and estimated sample association/correlation, risk of Type I errors and chance to correctly classify the effect size. Additionally, the probability is estimated so that the statistics of the sample deviate from an error free sample with no or only a weak effect.

16 get_iota2_measures

Note

The classification of effect sizes uses the work of Cohen (1988), who differentiates effect sizes by their relevance for practice.

For nominal data, all statistics refer to Cramer's V. For ordinal data, all statistics refer to Kendall's

The models for calculating the consequences are taken from Berding and Pargmann (2022).

References

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd Ed.). Taylor & Francis.

Berding, Florian, and Pargmann, Julia (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin: Logos. https://doi.org/10.30819/5581

get_iota2_measures

Get Iota2 Measures

Description

Function for calculating the elements of the Iota Concept 2

Usage

```
get_iota2_measures(aem, categorical_sizes, categorical_levels)
```

Arguments

Vector containing all possible categories of the content analysis.

Value

Returns a list of all measures belonging to the Iota Concept of the second generation. The first component estimates_categorical_level comprises all elements that describe the ratings on a categorical level. The elements are sub-divided into raw estimates and chance-corrected estimates.

raw_estimates iota: A vector containing the Iota values for each category.

iota_error_1: A vector containing the Iota Error Type I values for each category.

iota_error_2: A vector containing the Iota Error Type II values for each category.

alpha_reliability: A vector containing the Alpha Reliabilities for each category. These values represent probabilities.

beta_reliability: A vector containing the Beta Reliabilities for each category. These values represent probabilities.

get_patterns 17

assignment_error_matrix: Assignment Error Matrix containing the conditional probabilities for assigning a unit of category i to categories 1 to n.

elements_chance_corrected alpha_reliability: A vector containing the chance-corrected Alpha Reliabilities for each category.

beta_reliability: A vector containing the chance-corrected Beta Reliabilities for each category.

The second component estimates_scale_level contains elements for describing the quality of the ratings on a scale level. It comprises the following elements:

iota_index: The Iota Index, representing the reliability on a scale level.

iota_index_d4: The Static Iota Index, which is a transformation of the original Iota Index, in order to consider the uncertainty of estimation.

iota_index_dyn2: The Dynamic Iota Index, which is a transformation of the original Iota Index, in order to consider the uncertainty of estimation.

References

Florian Berding and Julia Pargmann (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin: Logos. https://doi.org/10.30819/5581

get_patterns Get patterns

Description

Auxiliary function written in R for providing the necessary information about the patterns generated by raters. This function produces the input for the EM-algorithm.

Usage

```
get_patterns(data, categorical_levels)
```

Arguments

data

Matrix or data.frame containing the ratings. The cases are in the rows and the raters are in the columns. Characters in the cells are supported. At least two raters are necessary.

categorical_levels

Vector containing all possible categories of the content analysis.

Value

Function returns a list with the following components:

n Integer representing the number of different patterns in the data.

shape Matrix containing all unique patterns in in the data. Cells of the matrix are

characters.

frq Vector containing the frequencies of the patterns.

count Matrix containing the relative frequencies of the categories within each pattern.

The number of rows equals the number of patterns. The number of columns

equals the number of categories.

get_random_start_values_class_sizes

Generating randomly chosen probabilities for categorical sizes

Description

Function written in C++ for generating a set of randomly chosen probabilities describing the size of the different classes. The probabilities describe the relative frequencies of the categories in the data.

Usage

```
get_random_start_values_class_sizes(n_categories)
```

Arguments

n_categories Integer for the number of categories in the data. Must be at least 2.

Value

Returns a vector of randomly chosen categorical sizes.

```
get_random_start_values_p
```

Generating randomly chosen probabilities for Assignment Error Ma-

trix

Description

Function written in C++ for generating a set of randomly chosen probabilities for the Assignment Error Matrix.

Usage

```
get_random_start_values_p(n_categories)
```

get_summary 19

Arguments

n_categories Integer for the number of categories in the data. Must be at least 2.

Value

Returns a matrix for Assignment Error Matrix (AEM) with randomly generated probabilities. The generated probabilities are in line with the assumption of weak superiority.

get_summary

Get Summary

Description

Function for creating a short summary of the estimated Iota components.

Usage

```
get_summary(object)
```

Arguments

object

An object of class iotarelr_iota2 created by compute_iota2, check_new_rater, or check_dgf.

Value

Prints central statistics of the estimated model.

grad_ll

Gradient for Log Likelihood in Condition Stage

Description

Function written in C++ estimating the gradient of the log likelihood function for a given parameter set and given observations.

Usage

```
grad_ll(param_values, observations)
```

Arguments

param_values NumericVector containing the probabilities of a multinominal distribution. The

length of this factor is the number of categories - 1 since it contains only the

parameters to be estimated.

observations
Numeric Vector containing the number of observations for each category of the

multinominal distribution. The length of this vector equals the number of cate-

gories.

Value

Returns the gradient as a Numeric Vector.

References

Berding, Florian, and Pargmann, Julia (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin: Logos. https://doi.org/10.30819/5581

iotarelr_new_rater

Sample Vector

Description

A vector containing the ratings of a new rater. The data is not real and is only created for illustration purposes.

Usage

iotarelr_new_rater

Format

A vector with the length of 318.

iotarelr_written_exams

Example Data Set

Description

A data set containing the ratings of three coders for written exams. It also contains the gender of the people who took the exam. The data is not real and is only created for illustrating purposes.

Usage

iotarelr_written_exams

Format

A data frame with 318 rows and 4 variables:

Coder A Ratings of coder A.

Coder B Ratings of coder B.

Coder C Ratings of coder C.

Sex Referring to the biological aspects of an individual.

log_likelihood_multi_c

```
log_likelihood_multi_c
```

Estimating log-likelihood in Condition Stage

Description

Function written in C++ estimating the log likelihood of a given parameter set during the condition stage.

Usage

```
log_likelihood_multi_c(probabilities, observations)
```

Arguments

probabilities
NumericVector containing the probabilities of a multinominal distribution. In

the context of Iota Reliability this refers to a specific row of the Assignment

Error Matrix.

observations NumericVector containing the number of observations for each category of the

multinominal distribution.

Value

Returns the log likelihood as a single numeric value.

References

Berding, Florian, and Pargmann, Julia (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin: Logos. https://doi.org/10.30819/5581

plot_iota

Plot Iota2

Description

Function for creating a plot object that can be plotted via ggplot2.

Usage

```
plot_iota(
  object,
  xlab = "Amount on all cases",
  ylab = "Categories",
  liota = "Assignment of the true category (Iota)",
  lcase2 = "Assignment to the false category",
```

22 plot_iota

```
lcase3 = "Assignment from the false true category",
lscale_quality = "Scale Quality",
lscale_cat = c("insufficent", "minimum", "satisfactory", "good", "excellent"),
number_size = 6,
key_size = 0.5,
text_size = 10,
legend_position = "bottom",
legend_direction = "vertical",
scale = "none"
)
```

Arguments

object	Estimates of Iota 2 created with compute_iota2(), check_dgf() or check_new_rater().	
xlab	Character passed to xlab() from scale_fill_manual(). Label of the x-axis.	
ylab	Character passed to ylab() from scale_fill_manual(). Label of the y-axis.	
liota	Character passed to labels() from scale_fill_manual(). Label for Iota.Amount of cases that are assigned to the correct category.	
lcase2	Character passed to labels() from scale_fill_manual(). Label for the amount of cases that are assigned to a false category.	
lcase3	Character passed to labels() from scale_fill_manual(). Label for the amount of cases that are assigned from a false category.	
lscale_quality	character passed to scale_fill_manual() determining the title for the quality of a scale. Only used in conjunction with scale.	
lscale_cat	Vector of strings with length 5. This vector contains the labels for each category of quality for the scale.	
number_size	Double passed to geom_text() determining the size of the numbers within the plot.	
key_size	Double passed to theme() determining the size of the legend keys.	
text_size	Double passed to theme() determining the size of the text within the legend.	
legend_position		
	string Position of the legend. Possible values are "bottom", "right", "left", "top" and "none".	
legend_direction		
	string Layout of the items in the legend. Possible values are "horizontal" and "vertical".	
scale	String for requesting an additional plot of reliability on the scale level. If scale="dynamic_iota_index" Dynamic Iota Index is used. If scale="static_iota_index" Static Iota Index is used. If scale="none" no additional plot is created.	

Value

Function returns an object of class gg, ggplot illustrating how the data of the different categories influence each other.

plot_iota2_alluvial 23

Note

An example for interpreting the plot can be found in the vignette Get started or via vignette ("iotarelr", package = "iotarelr").

References

Florian Berding and Julia Pargmann (2022). Iota Reliability Concept of the Second Generation. Measures for Content Analysis Done by Humans or Artificial Intelligences. Berlin: Logos. https://doi.org/10.30819/5581

Description

Function for creating an alluvial plot that can be plotted via ggplot2.

Usage

```
plot_iota2_alluvial(
  object,
  label_titel = "Coding Stream from True to Assigned Categories",
  label_prefix_true = "true",
  label_prefix_assigned = "labeled as",
  label_legend_title = "True Categories",
  label_true_category = "True Category",
  label_assigned_category = "Assigned Category",
  label_y_axis = "Relative Frequencies",
  label_categories_size = 3,
  key_size = 0.5,
  text_size = 10,
  legend_position = "right",
  legend_direction = "vertical"
)
```

Arguments

object

Estimates of Iota 2 created with compute_iota2(), check_new_rater() or with check_dgf(). Please note that the object created by check_dgf() cannot be passed directly. Only the elements of the corresponding list are compatible.

label_titel Character containing the title of the plot.

label_prefix_true

Character representing the prefix for tagging the true categories. Character is applied to every category.

label_prefix_assigned

Character representing the prefix for tagging the assigned categories. Character is applied to every category.

24 plot_iota2_alluvial

label_legend_title

Character containing the title of the legend.

label_true_category

Character describing the stratum of true categories.

label_assigned_category

Character describing the stratum of assigned categories.

label_y_axis Character. Label of the y-axis.

label_categories_size

double determining the size of the label for each true and assigned category

within the plot.

key_size double determining the size of the legend.

text_size double determining the size of the text within the legend.

legend_position

string Position of the legend. Possible values are "bottom", "right", "left", "top"

and "none".

legend_direction

string Layout of the items in the legend. Possible values are "horizontal" and

"vertical".

Value

Returns an object of class gg and ggplot which can be shown with plot().

Note

An example for interpreting the plot can be found in the vignette Get started or via vignette("iotarelr", package = "iotarelr").

Index

```
* datasets
    iotarelr_new_rater, 20
    {\tt iotarelr\_written\_exams, 20}
check_conformity_c, 2
check_dgf, 3, 19
check_new_rater, 4, 19
compute_iota1, 7
compute_iota2, 8, 19
EM_algo_c, 10
est_con_multinominal_c, 12
{\sf est\_expected\_categories}, 13
\verb|fct_log_likelihood_c|, 14|
get_consequences, 15
get_iota2_measures, 16
get_patterns, 17
get_random_start_values_class_sizes,
{\tt get\_random\_start\_values\_p,\,18}
get_summary, 19
ggplot2, 21, 23
grad_11, 19
iotarelr_new_rater, 20
{\tt iotarelr\_written\_exams,}\ 20
log_likelihood_multi_c, 21
plot_iota, 21
\verb|plot_iota2_alluvial|, 23|
```